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Abstract In this paper, the analysis of Semi-Markovian single server retrial queues bymeans
of Markov Regenerative Stochastic Petri Nets (MRSPN) is considered. We proposeMRSPN
models for the two retrial queuesM/G/1/N/N andM/G/1/N/N with orbital search. By inspect-
ing the reduced reachability graphof bothMRSPNmodels, the qualitative analysis is obtained.
The quantitative analysis is carried out after constructing their one step transition probability
matrix and computing the steady state probability distribution of each tangible marking. As
an example, the queue M/Hypo2/1/2/2 is treated in order to illustrate the functionality of
the MRSPN approach. The exact performance measures (mean number of customers in the
system, mean response time, mean waiting time,…) are computed for different parameters
of the two systems by an algorithm elaborated in Matlab environment.

Keywords Retrial systems · Markov Regenerative Process · Markov Regenerative
Stochastic Petri Nets · Embedded Markov Chain · Steady state · Orbital search

1 Introduction

In retrial queues (queueing systems with repeated calls) an incoming customer having found
the server busy does not exit the system but joins the orbit to repeat its demand after a
random period (see Fig. 1). Retrial queues are widely studied by several authors: Kosten
(1947), Wilkinson (1956), Cohen (1957). A survey work on the topic is written by Falin and
Templeton (1997). An exhaustive bibliography is given in Artalejo (2010). These queueing
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models appear in many practical applications such as: communication systems, computer
systems, telephone systems, etc.

The space heterogeneity of retrial queues is caused by the flow of the repeated calls which
renders the structure of the underlying stochastic processes more complicated. Therefore, the
analysis of retrial queueing systems is very difficult. In order to analyze the performance of
these systems, an important number of different approximating approaches and algorithms
are proposed (Abramov 2006; Artalejo and Gomez-Corral 1995; Artalejo and Pozo 2002;
Berjdoudj and Aïssani 2004; Gomez-Corral 2006; Lopez-Herrero 2006; Stepanov 1983;
Yang et al. 1994).

In some real applications on queueing theory, it is reasonable to assume that the rate
of generation of new primary calls decreases as the number of customers in the system
increases (see Falin and Artalejo 1998; Janssens 1997). This situation can be modeled by the
quasi random input or by the finite source systems. Pòsafalvi and Sztrik (1987) consider the
finite source queueing system with server’s breakdowns. Takagi (1993) reviews the classical
finite source queueing systems. Choi et al. (1994) carry out the transient and steady state
analysis of MRSPN, as example M/G/1/2/2 is analyzed. Oliver and Kishor (1991) study
an M/M/1//N queue with vacation by means ofGSPN. Furthermore, performance analysis
of the queueing system M/G/1//N with different vacation schemes is given by Ramanath
and Lakshmi (2006) by using the MRSPN tool.

Finite source retrial queues (FSRQ) are introduced by Kornyshev (1969). de Kok (1984)
with the regenerative process find a recursive scheme for computing the limiting probabilities
ofM(λni )/G/1//N retrial system. Ohmura and Takahashi (1985) obtain the limiting distrib-
ution of M/G/1//N with retrials, by applying the supplementary variable method combined
with the discrete transformation. Falin and Artalejo (1998) use the previous approach to
express the main characteristics in terms of server utilization of the M/G/1//N retrial sys-
tem. Kulkarni and Choi (1990) deal with FSRQ in which the server subject to breakdowns.
Artalejo and Gomez-Corral (1995) present an approximative approach based on the maxi-
mum entropy for M/G/1//N with different retrial policies. Li and Yang (1995) treat the
FSRQwith vacation. During the last decade, an important number of papers on this topic have
been published Almasi et al. (2005) (Homogeneous FSRQ), Gharbi and Ioualalen (2006),
use the MarkovianGSPN to analyze retrial systems and Zhang andWang (2013), Wang et al.
(2011), etc.

The orbital search behavior introduced in Artalejo et al. (2002) with the purpose to reduce
the server’s idle time. After termination of service, with probability p the server required

Fig. 1 Queueing system with repeated calls
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to search for customer from the orbit. For the papers devoted to orbital search mechanism
of infinite retrial queues see Artalejo et al. (2002), Dudin et al. (2004) and Sumitha and
Chandrika (2012). In finite source retrial queues with orbital search, we found the papers
Wüchner et al. (2008, 2009a, b). Particularly, in Wüchner et al. (2009a) the authors discuss
the maximum response time that appears in this FSRQ.

In Ikhlef et al. (2014), we studied the performance evaluation ofM/G/1/2/2 retrial queue
using the MRSPN tool. In this work we generalized our study to modeling and analyzing
the performances of the two complex retrial queuesM/G/1/N/N andM/G/1/N/N with orbital
search. We use the approach introduced by Choi based on the theory of Markov Regenerative
Process (MRP). The structure of the transition probability matrix P of the EmbeddedMarkov
Chain (EMC) related to each systems is nonhomogeneous due to the arrival flow from theorbit
and/or the quasi random input. Unfortunately, they are not an M/G/1-t ype (Neuts 1989).
The performance indices of the two MRSPN proposed for the two systems (M/G/1/N/N
and M/G/1/N/N with orbital search) are computed by an algorithm elaborated in Matlab
environment.

The remainder of this paper is structured as follows. In Sect. 2 we introduce some concepts
related toMRSPN. In Sects. 3 and 4, we describe theMRSPN associated to the two systems
M/G/1/N/N with retrials and M/G/1/N/N with orbital search. In Sect. 5, some performance
measures are computed and graphical results are depicted. Finally, the Sect. 6 concludes the
paper.

2 Non Markovian Stochastic Petri Nets

Stochastic Petri Nets are proposed as model for analyzing the performance and reliability of
complex systems. The notion of time is added to classical Petri Nets (PN) by assignment,
with transitions, a random variable called “firing time”, these transitions are indicated by
“timed transitions”. The firing time expresses the delay from the enabling condition to the
firing of the transition. Two large classes of Stochastic Petri Nets are defined according to the
type of firing times, discrete time Stochastic Petri Nets and continuous time Stochastic Petri
Nets.

The main extensions of the latter class are Stochastic Petri Nets (SPN), where exponen-
tially distributedfiring time is associated to each transition. They are definedbyMolloy (1982)
then extended byMarsan et al. (1984) to a class of Generalized Stochastic Petri Nets (GSPN)
by allowing zero firing times transitions (immediate transitions). The underlying stochastic
process of SPN or GSPN is a Continuous Time Markov Chain (CTMC). Dugan et al. (1985)
define Extended Stochastic Petri Nets (ESPN) that allow generally distributed firing times.
Under some hypothesis the nature of the underlying stochastic process of ESPN is a Semi-
Markovian process (SMP). Deterministic and Stochastic Petri Nets (DSPN) (Marsan and
Chiola 1987) are definedwith the aim of combining exponential and deterministic firing times
into a singlemodel. Choi et al. (1994) introduce a new extension namedMarkovRegenerative
Stochastic Petri Nets (MRSPN), where timed transitions can fire according to an exponen-
tially or any other generally distributed firing times. When at most one generally distributed
timed transition is enabled in eachmarking, the underlying stochastic process ofMRSPN and
DSPN belongs to the class of Markov Regenerative Process (MRP). Puliafito et al. (1998)
propose Concurrent Generalized Petri Nets (CGPN) which constitute a generalization of all
above extensions. The CGPN include simultaneous enabling of generally distributed timed
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transitions.Under the restriction that the generally distributed timed transitions are all enabled
at the same instants, the underlying stochastic process of the CGPN is still a MRP.

Different approaches have been explored in the literature for dealing with-non expo-
nentially distributed firing times: approximate analysis by phase type expansion (Cumani
1985), Markov renewal theory (Choi et al. 1994), method of supplementary variable (Cox
1955),…Ananalytical approach for the derivation of expression for the steady state ofMRSPN
is proved byChoi et al. (1994), where atmost one generally distributed transition is enabled in
each marking and its associated memory policy is of enabling type (Marsan et al. 1989). This
approach is based on the observation that the underlying stochastic process {M(t), t ≥ 0}
enjoys the absence of memory at certain instants of time (t0, t1, t2,...). These instants are
referred as regeneration points. An Embedded Markov Chain (EMC) {Yn, n ≥ 0} can be
defined at these regeneration points. For the quantitative analysis of theMRSPN we need to
compute:

• the matrix K (t), called global kernel, given by:

Ki j (t) = P{Y1 = j, t1 ≤ t/Y0 = i} i, j ∈ Ω. (1)

where Ω is the set of states of tangible markings. This matrix describes the process
behavior immediately after the next Markov regenerative point. The one step transition
probability matrix P of the EMC is derived from the global kernel K (t), indeed:

P = K (∞). (2)

• the matrix E(t), called the local kernel, given by:

Ei j (t) = P{M(t) = j, t1 > t/Y0 = i}. (3)

This matrix describes the behavior between two Markov regeneration points.

When the EMC is finite and irreducible its steady state probability vector v = (v1, v2, . . . ,

v j , . . .) is obtained by the solution of the linear system:{
vP = v;
v1 = 1; (4)

where 1 is a column vector of ones. The steady state probabilities distributions π =
(π1, π2, . . . , π j , . . .), j ∈ Ω of theMRP can be obtained by:

π j =
∑
k∈Ω

vkck j∑
k∈Ω

vk
∑
l∈Ω

ckl
, (5)

where ci j = ∫ ∞
0 Ei j (t)dt .

3 M/G/1/N/N queue with classical retrial policy

In this section, we consider a single server retrial queue with finite source (there are N
sources). A customer arrives from the source according to a poisson process with parameter
λ. When the server is idle the customer immediately occupies the service. The service time
distribution follows a general law with probability distribution function Fg(.). If the server
is busy, the customer joins the orbit to repeat its demand for service until it finds a free
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Fig. 2 M/G/1/N/N retrial queue with classical retrial policy

Fig. 3 MRSPN models the M/G/1/N/N retrial queue with classical retrial policy (Model I )

server. We assume that the intervals between successive repeated attempts are exponentially
distributed with rate iγ (when the orbit size is i). Figures 2 and 3 respectively shows the
schematic and theMRSPN model describing the M/G/1/N/N queueing system with retrials.

In Fig. 3 black rectangular box represents general (GEN) transition, white rectangular
boxes represent exponential (EXP) transitions, thin bars represent immediate transitions. The
4-tuple (#p.sour, #p.chec, #p.serv, #p.orbi) describes all possible markings of the given
MRSPN model, where #p.sour , #p.chec, #p.serv, #p.orbi are respectively, the number of
tokens in the places p.sour , p.chec, p.serv, p.orbi . The vector MI

0 = (N , 0, 0, 0) is its
initial marking (MI

0 means that the system is empty and there are N active sources).

• The EXP transition t.arri is enabled when the place p.sour contains at least one token.
The firing of the EXP transition t.arri consists to destroy a token in the place p.sour
and to construct a token in the place p.chec (this means that a primary call is arrived).
The firing rate of t.arri is marking dependent and equals (#p.sour)λ.
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Fig. 4 Reachability tree for theMRSPN model of Fig. 3 (N = 2)

• The immediate transition t.acc1 is enabled when the place p.chec contains a token and
p.serv does not contain a token. The firing of immediate transition t.acc1 consists to
destroy a token in the place p.chec and to build a token in the place p.serv (this represents
the fact that the customer has started its service and the server is moved from the free
state to the busy state).

• The GEN timed transition t.serv is enabled when the place p.serv contains one token.
The firing of the timed transition t.serv consists to destroy a token in the place p.serv
and to construct a token in the place p.sour (the costumer has completed its service and
joins the source). The server is moved from the busy state to the free state. The firing
policy of t.serv is the race with enabling memory (Marsan et al. 1989).

• The immediate transition t.acc2 is enabled when the two places p.chec and p.serv
contain a token. The firing of the immediate transition t.acc1 consists to destroy a token
in the place p.chec and to construct a token in the place p.orbi (the customer joins the
orbit). The immediate transition t.acc1 has higher priority than the immediate transition
t.acc2.

• The EXP transition t.retr is enabled when the place p.orbi contains at least one token.
The firing of the timed transition t.retr consists to destroy a token in the place p.orbi and
to construct a token in the place p.chec. The firing rate of t.retr is marking dependent
and equals (#p.orbi)γ .

When the place p.sour contains two tokens (N = 2), the reachability tree which describes
all possible states of MRSPN model starting from the initial marking MI

0 = (2, 0, 0, 0) is
given in Fig. 4. The boxes with rounded corners are tangible markings and the boxes with
discrete rounded corners are vanishing markings.
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Fig. 5 Subordinated CTMC for
the MRSPN model of
Fig. 3 (N = 2)

This reachability tree contains three vanishing markings and four tangible markings. By
merging the vanishing markings into their successors tangible markings, we obtain the state
transition diagram of theMRSPN model depicted in Fig. 5.

In this figure solid arcs indicate the firing of the EXP transitions t.arri and t.serv, dotted
arcs indicate the firing of the GEN transition t.serv.

Remark The conservation of the number of tokens gives the following equation:

#p.sour + #p.chec + #p.serv + #p.orbi = N . (6)

According to this equation, it is clear that #p.sour = N − (#p.chec+ #p.serv + #p.orbi).
However, the place p.chec is empty because the sojourn time of a token in this place is
negligible. So, #p.sour = N − (#p.serv + #p.orbi). Thus, it is enough to indicate the
marking of ourMRSPN by the number of tokens in the two places p.serv and p.orbi . Thus,
the system state can be described by the variables (#p.serv, #p.orbi), which we call a micro
states (Gharbi and Charabi 2012), where:

• # p.serv: is the marking of the place p.serv, i.e., represents the state of the server,

#p.serv =
{
1, if there is a token in the place p.serv, i.e., the server is busy;
0, if the place p.serv is empty, i.e., the server is idle.

• #p.orbi : is the marking of the place p.orbi , i.e., represents the number of customers in
the orbit.

Hence, having the micro states (#p.serv, #p.orbi), the ordinary states of our MRSPN can
be obtained by:

MI = (N − (#p.serv + #p.orbi), 0, #p.serv, #p.orbi). (7)

Thus, in the study of the model I , the markings of our MRSPN will be described by the
previous micro states.

The states space Ω I of ourMRSPN (when N = 2) is given by:

Ω I = {MI
0 (0, 0), MI

1 (1, 0), MI
2 (0, 1), MI

3 (1, 1)}.
Let MI

i , MI
j ∈ Ω I , the infinitesimal generator matrix QI = [q I

M I
i M

I
j
] of the subordinated

CTMC with respect to GEN transition t.serv is given by:

QI =

⎛
⎜⎜⎝
0 0 0 0
0 −λ 0 λ

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (8)
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The local kernel, E I (t) = [E I
MI

i M
I
j
(t)], is given by:

E I (t) =

⎛
⎜⎜⎝
e−2λt 0 0 0
0 e−λt (1 − Fg(t)) 0 (1 − e−λt )(1 − Fg(t))
0 0 e−(γ+λ)t 0
0 0 0 1 − Fg(t)

⎞
⎟⎟⎠ . (9)

The global kernel, K I (t) = [K I
MI

i M
I
j
(t)], is given by:

K I (t) =

⎛
⎜⎜⎜⎝

0 1 − e−2λt 0 0∫ t
0 e−λx dFg(x) 0

∫ t
0 [1 − e−λx ]dFg(x) 0

0 γ
γ+λ [1 − e−(γ+λ)t ] 0 λ

γ+λ [1 − e−(γ+λ)t ]
0 0

∫ t
0 dFg(x) 0

⎞
⎟⎟⎟⎠ .

We suppose that the firing time density function f g(.) of GEN transition t.serv is Hypoex-
ponential distribution with two phases “Hypo2(μ,

μ
2 )”.

The one step transition probability matrix, P I = [P I
MI

i M
I
j
], is given by:

P I =

⎛
⎜⎜⎜⎝

0 1 0 0
μ2

(2λ+μ)(λ+μ)
0 3λμ+2λ2

(2λ+μ)(λ+μ)
0

0 γ
γ+λ

0 λ
γ+λ

0 0 1 0

⎞
⎟⎟⎟⎠ . (10)

The MRSPN model depicted in Fig. 3 (N = 2) is bounded and admits MI
0 = (0, 0) like

home state so it is ergodic. We calculate the steady state probabilities of EMC by solving the
linear system v I P I = v I and v I1 = 1, we obtain:

v I
(0,0) = 1

2

γμ2

2γ λ2 + 3γ λμ + γμ2 + 2λ3 + 3λ2μ
; (11)

v I
(1,0) = 1

2

γ (2λ + μ)(λ + μ)

2γ λ2 + 3γ λμ + γμ2 + 2λ3 + 3λ2μ
; (12)

v I
(0,1) = 1

2

λ(γ + λ)(3μ + 2λ)

2γ λ2 + 3γ λμ + γμ2 + 2λ3 + 3λ2μ
; (13)

v I
(1,1) = 1

2

λ2(3μ + 2λ)

2γ λ2 + 3γ λμ + γμ2 + 2λ3 + 3λ2μ
. (14)

The elements cI
M I

i M
I
j
are given by the matrix C I :

C I =

⎛
⎜⎜⎜⎝

1
2λ 0 0 0

0 3μ+2λ
(2λ+μ)(λ+μ)

0 6λ2+7λμ
u(2λ+μ)(λ+μ)

0 0 1
γ+λ

0

0 0 0 3
μ

⎞
⎟⎟⎟⎠ . (15)

The steady state probabilities distributions of theMRP underlying ofMRSPN model “π I =
(π I

(0,0), π
I
(1,0), π

I
(0,1), π

I
(1,1))” are given by:

π I
(0,0) = γμ3

γμ3 + 12γ λ3 + 18γ λ2μ + 6γ λμ2 + 22λ3μ + 6λ2μ2 + 12λ4
; (16)
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Fig. 6 Subordinated CTMC for theMRSPN of Fig. 3

π I
(1,0) = 2γμλ(3μ + 2λ)

γμ3 + 12γ λ3 + 18γ λ2μ + 6γ λμ2 + 22λ3μ + 6λ2μ2 + 12λ4
; (17)

π I
(0,1) = 2λ2μ(3μ + 2λ)

γμ3 + 12γ λ3 + 18γ λ2μ + 6γ λμ2 + 22λ3μ + 6λ2μ2 + 12λ4
; (18)

π I
(1,1) = 2λ2(6λ2 + 9λμ + 6γ λ + 7γμ)

γμ3 + 12γ λ3 + 18γ λ2μ + 6γ λμ2 + 22λ3μ + 6λ2μ2 + 12λ4
. (19)

For all N we obtain the state transition diagram (see Fig. 6) of theMRSPN depicted in Fig. 3
with states space Ω I such that:

Ω I = {MI
2i = (0, i), MI

2i+1 = (1, i) : 0 ≤ i ≤ N − 1} and | Ω I |= 2N .

The regeneration points are defined as follows:

• Let t0 = 0, the marking of theMRSPN depicted in Fig. 3 is in the state MI
0 = (0, 0), the

next instant t1 corresponds to the firing of t.arri .
• If at the nth regeneration points tn , the marking of the MRSPN depicted in Fig. 3 is in

the state MI
2i = (0, i), i ≥ 1, the regeneration instant tn+1 corresponds to the firing of

t.retr or t.arri .
• If at the nth regeneration points tn , the marking of the MRSPN depicted in Fig. 3 is in

the state MI
2i+1 = (1, i), i ≥ 0, the regeneration instant tn+1 corresponds to the firing of

t.serv.

Let MI
i , MI

j ∈ Ω I , the infinitesimal generator matrix QI = [q I
M I

i M
I
j
] of the subordinated

CTMC with respect to GEN transition t.serv is given by:

q I
M I

i M
I
j

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− ( 2N−i−1
2

)
λ, if 1 ≤ i < 2N − 1, i odd and j = i;

( 2N−i−1
2

)
λ, if 1 ≤ i < 2N − 1, i odd and j = i + 2;

0, otherwise.

(20)
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The local Kernel E I (t) = [E I
MI

i M
I
j
(t)] is given by:

E I
MI

i M
I
j
(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−Nλt , if i = j = 0;

C
j−i
2

N− i+1
2

(1 − e−λt )
j−i
2 (e−λt )N− j+1

2 (1 − Fg(t)),

if 1 ≤ i < 2N , i odd and i ≤ j < 2N , j odd;

e
−

[
i
2 γ+(N− i

2 )λ
]
t
, if 2 ≤ i < 2N , i even and j = i;

0, otherwise.

(21)

The global kernel K I (t) = [K I
MI

i M
I
j
(t)] is given by:

K I
MI

i M
I
j
(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − e−Nλt , if i = 0 and j = 1

∫ t
0 C

j−i+1
2

N− i+1
2

(1 − e−λx )
j−i+1

2 (e−λx )N− j+2
2 dFg(x),

if 1 ≤ i ≤ 2N − 1, i odd and i − 1 ≤ j ≤ 2N − 2, j even;

i
2 γ

i
2 γ+(N− i

2 )λ

(
1 − e

−
[
i
2 γ+(N− i

2 )λ
]
t
)

,

if 2 ≤ i ≤ 2N − 2, i even and j = i − 1;

(N− i
2 )λ

i
2 γ+(N− i

2 )λ

(
1 − e

−
[
i
2 γ+(N− i

2 )λ
]
t
)

,

if 2 ≤ i ≤ 2N − 2, i even and j = i + 1;

0, otherwise.

(22)

The one step transition probability matrix P I = [P I
MI

i M
I
j
] is given by:

P I
MI

i M
I
j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if i = 0, j = 1;
∫ ∞
0 C

j−i+1
2

N− i+1
2

(1 − e−λx )
j−i+1

2 (e−λx )N− j+2
2 dFg(x),

if 1 ≤ i ≤ 2N − 1, i odd and i − 1 ≤ j ≤ 2N − 2, j even;

i
2 γ

i
2 γ+(N− i

2 )λ
, if 2 ≤ i ≤ 2N − 2, i even and j = i − 1;

(N− i
2 )λ

i
2 γ+(N− i

2 )λ
, if 2 ≤ i ≤ 2N − 2, i even and j = i + 1;

0, otherwise.

(23)
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The matrix C I = [cI
M I

i M
I
j
] is given by:

cI
M I

i M
I
j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Nλ

, if i = j = 0

∫ ∞
0 C

j−i
2

N− i+1
2

(1 − e−λt )
j−i
2 (e−λt )N− j+1

2 (1 − Fg(t))dt,

if 1 ≤ i < 2N , i odd and i ≤ j < 2N , j odd;

1
i
2 γ+(N− i

2 )λ
, if 2 ≤ i < 2N , i even and j = i;

0, otherwise.

(24)

After computing the steady state probabilities distributions:

π I = (π I
(0,0), π

I
(1,0), . . . , π

I
(0,i), π

I
(1,i), . . . , π

I
(0,N−1), π

I
(1,N−1));

various performance characteristics ofM/G/1/N/N with retrials can be derived:

• The mean number of customers in the orbit (no):

nIo =
N−1∑
i=1

i [π I
(0,i) + π I

(1,i)]. (25)

• The mean number of customers in the service or in the orbit (ns):

nIs =
N−1∑
i=1

i [π I
(0,i) + π I

(1,i)] +
N−1∑
i=0

π I
(1,i). (26)

• The mean number of active sources (as):

aI
s = N − nIs . (27)

• The mean generation rate of primary calls (λ):

λ
I = λ

[
N−1∑
i=0

(N − i) π I
(0,i) +

N−2∑
i=0

(N − i − 1) π I
(1,i)

]
. (28)

• The mean generation rate of repeated calls (γ ):

γ I = γ

N−1∑
i=1

i [π I
(0,i) + π I

(1,i)]. (29)

• The probability that the server is busy (Bs):

BI
s =

N−1∑
i=0

π I
(1,i). (30)

• The blocking probability of a primary calls (Bp):

BI
p = λ

∑N−2
i=0 (N − i − 1) π I

(1,i)

λ
I

. (31)
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Fig. 7 M/G/1/N/N retrial queue with orbital search

• The blocking probability of a repeated calls (Br ):

BI
r = γ

∑N−1
i=1 i π I

(1,i)

γ I
. (32)

• The mean waiting time (ω), from Little’s law:

w I = nIo

λ
I
. (33)

• The mean response time (�), from Little’s law:

� I = nIs

λ
I
. (34)

4 M/G/1/N/N Retrial queue with orbital search

We study the retrial systemM/G/1/N/N with orbital search mechanism. After a service com-
pletion, with probability p the server takes a customer from the orbit for service and with
probability (1− p) the server becomes idle until a new arrival captures the server. We assume
that the search time is negligible. Figures 7 and 8 respectively shows the schematic and the
MRSPN model describing the retrial queueM/G/1/N/N with orbital search.

The 5-tuple (#p.sour, #p.chec, #p.serv, #p.orbi, #p.sear) describes all possible mark-
ings of the givenMRSPN model. The vector MI I

0 = (N , 0, 0, 0, 0) is its initial marking.
At the difference of the model I , this model considers the orbital search mechanism. So,

we keep the same interpretation as that of the model I for which we add the changes made
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Fig. 8 MRSPN models the M/G/1/N/N retrial queue with orbital search (Model I I )

by this mechanism. Thus, the sub-net modeling this mechanism contains two immediate
transitions t.acc3, t.acc4 and one place p.sear .

• The firing of the GEN transition t.serv consists to destroy a token in the place p.serv
and to construct a token in the place p.sear . The presence of a token in the place p.sear
means that the customer has completed its service and he is ready to join the source.

• The immediate transition t.acc3 is enabled when the place p.sear contains a token
and the place p.orbi contains at least one token. The instantly firing of the immediate
transition t.acc3, with weight p, consists to destroy a token in each of the two places
p.sear , p.orbi and to construct a token in each of the two places p.serv, p.sour , this
means that the server searches a customer in the orbit and the customer, who has finished
its service, joins the source.

• The immediate transition t.acc4 is enabled when the place p.sear contains a token. The
instantly firing of the immediate transition t.acc4, withweight (1− p), consists to destroy
a token in the place p.sear and to construct a token in the place p.sour , this means that
the customer joins the source and the server remains idle.

By reasoning in the same way as in the previous model I , the ordinary states of ourMRSPN
given by MI I = (#p.sour, #p.chec, #p.serv, #p.orbi, #p.sear), can be described by the
micro states MI I = (#p.serv, #p.orbi).

We obtain the state transition diagram (see Fig. 9) of theMRSPN model depicted in Fig. 8,
its state space:

Ω I I = {MI I
2i = (0, i), MI I

2i+1 = (1, i) : 0 ≤ i ≤ N − 1} and | Ω I I |= 2N .

We suppose that N = 2 and the firing time density function f g(.) of GEN transition
t.serv is given by Hypoexponential distribution with two phases “Hypo2(μ,

μ
2 )′′.

The one step transition probability matrix P I I = [P I I
M I I

i M I I
j

] is given by:

P I I =

⎛
⎜⎜⎜⎝

0 1 0 0
μ2

(2λ+μ)(λ+μ)
p(3λμ+2λ2)

(2λ+μ)(λ+μ)
(1−p)(3λμ+2λ2)

(2λ+μ)(λ+μ)
0

0 γ
γ+λ

0 λ
γ+λ

0 p 1 − p 0

⎞
⎟⎟⎟⎠ . (35)
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Fig. 9 Subordinated CTMC for theMRSPN model of Fig. 8

The MRSPN model depicted in Fig. 8 (N = 2) is bounded and admits MI I
0 = (0, 0) like

home state so it is ergodic. We compute the steady state probability vector v I I of the EMC
by solving the linear system v I I P I I = v I I and v I I1 = 1, we find:

v I I
(0,0) = μ2(pλ + γ )

4λ3 + 6λ2μ + 2pλμ2 − 2pγ λ2 − 3pλγμ + 4γ λ2 + 6λγμ − 2pλ3 − 3pλ2μ + 2γμ2 ;

v I I
(1,0) = (2λ + μ)(λ + μ)(pλ + γ )

4λ3 + 6λ2μ + 2pλμ2 − 2pγ λ2 − 3pλγμ + 4γ λ2 + 6λγμ − 2pλ3 − 3pλ2μ + 2γμ2 ;

v I I
(0,1) = λ(λ + γ )(2λ + 3μ − 2pλ − 3pμ)

4λ3 + 6λ2μ + 2pλμ2 − 2pγ λ2 − 3pλγμ + 4γ λ2 + 6λγμ − 2pλ3 − 3pλ2μ + 2γμ2 ;

v I I
(1,1) = λ2(2λ + 3μ − 2pλ − 3pμ)

4λ3 + 6λ2μ + 2pλμ2 − 2pγ λ2 − 3pλγμ + 4γ λ2 + 6λγμ − 2pλ3 − 3pλ2μ + 2γμ2 .

The steady state probabilities distributions:

π I I =
(
π I I

(0,0), π
I I
(1,0), π

I I
(0,1), π

I I
(1,1)

)

of theMRP underlying to theMRSPN model, are given by:

π I I
(0,0) = μ3(pλ + γ )

pλμ3 + γμ3 − 4pλ3μ + 18γ λ2 + 6λγμ2 + 22λ3μ + 6λ2μ2 + 12γ λ3 + 12λ4
;

π I I
(1,0) = 2λμ(pλ + γ )(2λ + 3μ)

pλμ3 + γμ3 − 4pλ3μ + 18γ λ2 + 6λγμ2 + 22λ3μ + 6λ2μ2 + 12γ λ3 + 12λ4
;

π I I
(0,1) = 2λ2μ(2λ + 3μ − 2pλ − 3pμ)

pλμ3 + γμ3 − 4pλ3μ + 18γ λ2 + 6λγμ2 + 22λ3μ + 6λ2μ2 + 12γ λ3 + 12λ4
;

π I I
(1,1) = 2λ2(6γ λ + 7γμ + 6λ2 + 9λμ − 2pλμ)

pλμ3 + γμ3 − 4pλ3μ + 18γ λ2 + 6λγμ2 + 22λ3μ + 6λ2μ2 + 12γ λ3 + 12λ4
.

If we put p = 0 in the above steady state probabilities distributions we constat that the model
I is a particular case of the model I I .

For all N , the global kernel K I I (t) = [K I I
M I I

i M I I
j

(t)] is given by:
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K I I
M I I

i ,MI I
j

(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − e−Nλt , if i = 0 and j = 1;
∫ t
0 e

−λ(N−1)xdFg(x), if i = 1 and j = 0;
∫ t
0 C

j+1
2

N−1(1 − e−λx )
j+1
2 (e−λx )

2N− j−3
2 dFg(x)p,

if i = 1 and 1 ≤ j < 2N − 1, j odd;

∫ t
0 C

j
2
N−1(1 − e−λx )

j
2 (e−λx )

2N− j−2
2 dFg(x)(1 − p),

if i = 1, 2 ≤ j ≤ 2N − 2 and jeven;

i
2 γ

i
2 γ+(N− i

2 )λ
(1 − e−[ i2 γ+(N− i

2 )λ]t ),
if 2 ≤ i ≤ 2N − 2, i even and j = i − 1;

(N− i
2 )λ

i
2 γ+(N− i

2 )λ
(1 − e−[ i2 γ+(N− i

2 )λ]t ),
if 2 ≤ i ≤ 2N − 2 , i even and j = i + 1;
∫ t
0 C

j−i+2
2

2N−i−1
2

(1 − e−λx )
j−i+2

2 (e−λx )
2N− j−3

2 dFg(x)p,

if 3 ≤ i ≤ 2N − 1, i odd and i − 2 ≤ j < 2N − 1, j odd;

∫ t
0 C

j−i+1
2

2N−i−1
2

(1 − e−λx )
j−i+1

2 (e−λx )
2N− j−2

2 dFg(x)(1 − p),

if 3 ≤ i ≤ 2N − 1, i odd and i − 1 ≤ j ≤ 2N − 2, j even;

0, otherwise.

(36)

The model I I characteristics can be obtained by replacing, in formulas (25)–(34), the steady
state probability distribution vector π I by π I I . The model I I has the same local kernel
with the model I , its one step transition probability matrix P I I = [P I I

M I I
i M I I

j
] is given by

P I I = K I I (∞).

Remark The given models I and I I can be extended easily to queues with constant retrial
policy just by omitting in model I (Fig. 3) and model I I (Fig. 8) the symbol # for the EXP
transition “t.retr” and changing some elements in the global kernel K (t) and in the local
kernel E(t) like this:

KMi Mj (t) = γ (1 − e−[γ+(N− i
2 )λ]t )

γ + (N − i
2 )λ

, if 2 ≤ i ≤ 2N − 2, i even and j = i − 1;

KMi Mj (t) = (N − i
2 )λ (1 − e−[γ+(N− i

2 )λ]t )
γ + (N − i

2 )λ
, if 2 ≤ i ≤ 2N − 2, i even and j = i + 1;

EMi Mj (t) = e−[γ+(N− i
2 )λ]t , if 2 ≤ i < 2N , i even and j = i.
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Table 1 Comparison of stationary distributions of the model M/H2/1/N/N retrial queue given in Artalejo
and Gomez-Corral (1995), with the MRSPN (Model I )

i p(0,i) p(1,i) π I
(0,i) π I

(1,i)

0 0.50585 0,20421 0.5058559 0.2042149

1 0.09927 0.10799 0.0992711 0.1079912

2 0.02249 0.04007 0.0224982 0.0400719

3 0.00463 0.01151 0.0046380 0.0115193

4 0.00079 0.00255 0.0008000 0.0025573

5 0.00010 0.00041 0.0001066 0.0004180

6 0, 96 × 10−5 0.00004 0, 97 × 10−5 0,0000451

7 0, 44 × 10−6 0, 24 × 10−5 0, 44 × 10−6 0, 24 × 10−5

Table 2 Comparison of some
characteristics of the model
M/M/1/N/N with orbital
search given in Wüchner et al.
(2009a), with theMRSPN
(Model I I )

Measures M/M/1/3/3 MRSPN (Model I I )

nI Io 0.3648981538 0.3648981

nI Is 0.6044528670 0.6044528

aI Is 2.395547133 2.3955472

λ
I I

0.2395547133 0.2395547

w I I 1.523235126 1.5232351

� I I 2.523235126 2.5232351

5 Numerical results

We show how the MRSPN model given in Sects. 3 and 4 may be used to obtain the perfor-
mance measures of the two retrial queueing systems M/G/1/N/N (Model I ) and M/G/1/N/N
with orbital search (Model I I ). The numerical results are established using the algorithm
elaborated in Matlab. Graphical results are depicted to investigate the influence of arrival
rate, retrial rate and orbital search probability on the mean response time, the mean number
of customers in the orbit, and the server utilization.

In Table 1, the model I proposed for the queue M/G/1/N/N with classical retrial policy,
is validated by the exact numerical results given in Artalejo and Gomez-Corral (1995) for
the parameters “N = 8, λ = 0.5, γ = 7.2, q = 0.35, μ1 = 12, μ2 = 9”. We see that the
performance indices corresponding theMRSPN associated toM/G/1/N/N queue with retrials
are similar to those obtained in Artalejo and Gomez-Corral (1995).

In Table 2, the model I I proposed to M/G/1/N/N retrial queue with orbital search is
validated by the exact numerical results given in Wüchner et al. (2009a) for the parameters
“N = 3, λ = 0.1, γ = 0.0025, μ = 1, p = 0.5”. We see that the performance indices
corresponding to the MRSPN associated to retrial queue M/G/1/N/N with orbital search are
similar to those obtained in Wüchner et al. (2009a).

In Tables 3, 4, and 5, we present numerical results for different service time distributions
with two phases

(
Hypoexponential “Hypo2: f g(x) = μ1μ2

μ1−μ2
(e−μ2x − e−μ1x )” with the

parameters “λ = 0.8, N = 7, γ = 5, μ1 = 21, μ2 = 14, p = 0.5”, Hyperexponential
“H2: f g(x) = qμ1e−μ1x +(1−q)μ2e−μ2x” with the parameters “λ = 2.3, N = 8, γ = 5.2,
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Table 3 Some performance measures for the Hypoexponential service

Measures Model I Model I I Measures Model I Model I I

no 1.0060990 0.6493675 Bs 0.5212088 0.5522289

ns 1.5273077 1.2015964 Bp 0.4614151 0.4893249

as 5.4726925 5.7984037 Br 0.5984199 0.7331295

λ 4.3781538 4.6387229 w 0.2297998 0.1399884

γ 5.0304947 3.2468374 � 0.3488474 0.2590360

Table 4 Some performance measures for the Hyperexponential service

Measures Model I Model I I Measures Model I Model I I

no 2.0397968 1.6502372 Bs 0.4751854 0.5062435

ns 2.5149822 2.1564808 Bp 0.4205691 0.4509442

as 5.4850178 5.8435192 Br 0.4997894 0.5505898

λ 12.6155405 13.4400940 w 0.1616892 0.1227847

γ 10.6069441 8.5812340 � 0.1993559 0.1604513

Table 5 Some performance measures for the Erlang service

Measures Model I Model I I Measures Model I Model I I

no 4.2721696 2.3794110 Bs 0.6166735 0.8635551

ns 4.8888431 3.2429662 Bp 0.5629232 0.8254101

as 4.1111569 5.7570338 Br 0.6130662 0.9063280

λ 6.1667352 8.6355505 w 0.6927766 0.2755367

γ 8.9715557 4.9967632 � 0.7927765 0.3755367

q = 0.35, μ1 = 30, μ2 = 25, p = 0.2” and Erlang “E2: f g(x) = 4μ2xe−2μx” with the
parameters “λ = 1.5, N = 9, γ = 2.1, μ = 10, p = 0.85′′) for the two models I and I I .

In the following, we will present some numerical results in order to illustrate graphi-
cally the impact on the variation of different parameters of the studied models on the main
characteristics of this models.

5.1 Comments and discussion of the results

In Fig. 10, it can be seen that the mean response time of the retrial queue M/G/1/N/N has a
maximum. The location and the amplitude of this maximum depend on the retrial rate γ . We
observe that, the arrival rate λ has a significant influence on the mean response time when the
retrial rate γ is weak.Moreover, for high values of retrial rate, this influence is not significant.
It can also be seen that all curves get close to each other for high value of the arrival rate λ.

In Fig. 11, we see that the increase in the arrival rate λ induces an increase on the server
utilization.

In Fig. 12, we observe that the mean response time decreases when the retrial rate γ

increases. This retrial rate has a significant effect on the mean response time when it is weak.
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Fig. 10 Effect of arrival rate on model I mean response time; “N = 4, λ = 0.15, . . . , 10, Hypo2(7; 5)”

Fig. 11 Effect of arrival rate on the model I server utilization; “N = 4, λ = 10−1, . . . , 20, Hypo2(7; 5),
γ = 0.25”

From Fig. 13, we see that the mean number of customers in the orbit decreases with the
increase of the retrial rate γ . This decrease becomes slowwith the intensifying of the repeated
calls.

From Figs. 14 and 15, we observe that in contrast to Figs. 10 and 12 the variance of the
service time has notable influence on mean response time. This influence decreases with
rising retrial rate γ .
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Fig. 12 Effect of retrial rate on model I mean response time; “N = 4, λ = 0.2, Hypo2(7; 5), γ =
10−2, . . . , 2”

Fig. 13 Effect of retrial rate on model I mean number of customers in the orbit; “N = 4, λ = 0.2,
Hypo2(7; 5), γ = 10−1, . . . , 20”

Finally, from the model I graphs, we see that when the retrial rate tends to ∞ all the
considered characteristics (the mean response times, the mean number of customer in the
orbit, and the server utilization) approach those of the classicalM/G/1/N/N queue which has
the optimistic performance bound.
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Fig. 14 Effect of the variance σ 2 of the service time on model I mean response time; “N = 4, λ = 0.5,
Hypo2(μ1; μ2) with σ 2 = 5.10−2, . . . , 25”

Fig. 15 Effect of the variance σ 2 of the service time on model I mean response time; “N = 4, λ = 1.2,
Hypo2(μ1; μ2) with σ 2 = 5.10−2, . . . , 1”

In Figs. 16 and 17, Furthermore, we notice that the mean response time of the retrial
queueM/G/1/N/N with orbital search has a maximum. The location and the amplitude of this
maximum depend on the retrial rate γ and the search probability p. For higher values of the
search probability p or lower values of retrial rate γ , the maximum becomes less dominant.
The arrival rate λ has a significant influence on the mean response time when the retrial rate
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Fig. 16 Effect of arrival rate on model I I mean response time; “N = 4, λ = 0.15, . . . , 10, Hypo2(7; 5),
γ = 0.1”

Fig. 17 Effect of arrival rate on model I I mean response time; “N = 4, λ = 0.15, . . . , 10, Hypo2(7; 5),
p = 0.2”

γ is weak and/or (p ∈ {0.01, 0.3, 0.5}). Furthermore, we constat that all curves get close to
each other for high value of the arrival rate λ.

In Fig. 18, we observe that the increase of the arrival rate λ induces an increase on the
server utilization. For high values of the probability search p the server utilization approaches
to 1.
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Fig. 18 Effect of arrival rate on the model I I server utilization; “N = 4, λ = 0.15, . . . , 10, Hypo2(7; 5),
γ = 0.25”

Fig. 19 Effect of variance σ 2 of the service time on model I I mean response time; “N = 4, λ = 0.5,
Hypo2(μ1; μ2) with σ 2 = 5.10−2, . . . , 25, γ = 0.1”

FromFigs. 19 and20,weobserve that, the variance of the service timehas notable influence
on mean response time for all values of p. This influence decreases with rising the search
probability p. The shortest mean response time is obtained when p tends to 1. Furthermore,
from Figs. 21 and 22 we constat that the variance of the service time has notable influence
on mean response time for all values of γ . This influence decreases with rising retrial rate γ .
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Fig. 20 Effect of variance σ 2 of the service time on model I I mean response time; “N = 4, λ = 0.8, E2(μ)

with σ 2 = 0.1, . . . , 6, γ = 0.25”

Fig. 21 Effect of variance σ 2 of the service time on model I I mean response time; “N = 4, λ = 0.5,
Hypo2(μ1; μ2) with σ 2 = 5.10−2, . . . , 25, p = 0.2”

In Fig. 23, we observe that the response time decreases with the intensity of the retrial
rate γ , particularly when p tends to 1, γ has a negligible effect on mean response time. On
the other hand, the influence of the retrial rate is more significant for smaller value of p.

From Fig. 24, we see that the mean number of customers in the orbit decreases with the
increase of the retrial rate γ . This decrease is not considerable for high retrial rate values.
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Fig. 22 Effect of variance σ 2 of the service time on model I I mean response time; “N = 4, λ = 1,
H2(q, μ1, μ2) with σ 2 = 0.1, . . . , 2.5, p = 0.2, q = 0.6”

Fig. 23 Effect of retrial rate on model I I mean response time; “N = 4, λ = 0.2, Hypo2(7; 5), γ =
10−2, . . . , 2”

For high values of γ the behavior of finite source retrial queues with orbital search tends to
the behavior of the classical M/G/1/N/N queueing system.

Finally, our study confirms that the server utilization increases with the increasing of the
orbital research probability. This means that the server’s idle time is reduced using the orbital
search policy.
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Fig. 24 Effect of retrial rate on model I I mean number of customers in the orbit; “N = 4, λ = 0.2,
Hypo2(7; 5), γ = 10−1, . . . , 20”

6 Conclusion

In this work, an alternative approach for modeling and analyzing Semi-Markovian retrial
queues is presented. A qualitative and quantitative analysis of M/G/1/N/N with retrials is
obtained by the approach based on the theory of MRP. As an example, the analysis of the
retrial queue M/Hypo2/1/2/2 is detailed. Furthermore, the MRSPN model of M/G/1/N/N
with retrials is extended to orbital searchmechanism. The characteristics of the above systems
are computed and some graphical results are obtained by an algorithm elaborated in Matlab
environment. It may be interesting to provide a detailed study on the transient analysis
and/or to include, to the same models, the following phenomenons: vacation, breakdown,
etc. Moreover, the MRSPN − M/Hypo2/1/N/N can be applied as a good approximation
forMRSPN models associated to complex queues.
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